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Abstract—The Internet of Things (IoT) is enabling a new
generation of innovative services based on the seamless inte-
gration of smart objects into information systems. Such IoT
devices generate an uninterrupted flow of information that can be
transmitted through an untrusted network and stored on an un-
trusted infrastructure. The latter raises new security and privacy
challenges that require novel cryptographic methods. Attribute-
Based Encryption (ABE) is a new type of public-key encryption
that enforces a fine-grained access control on encrypted data
based on flexible access policies. The feasibility of ABE adoption
in fully-fledged computing systems, i.e. smartphones or embedded
systems, has been demonstrated in recent works. In this paper
we assess the feasibility of the adoption of ABE in typical IoT
constrained devices, characterized by limited capabilities in terms
of computing, storage and power. Specifically, an implementation
of three ABE schemes for ESP32, a low-cost popular platform
to deploy IoT devices, is developed and evaluated in terms of
encryption/decryption time and energy consumption. The perfor-
mance evaluation shows that the adoption of ABE on constrained
devices is feasible, although it has a cost that increases with the
number of attributes. The analysis in particular highlights how
ABE has a significant impact in the lifetime of battery-powered
devices, which is impaired significantly when a high number of
attributes is adopted.

Index Terms—Internet of Things, constrained devices, security,
attribute-based encryption, performance evaluation

I. INTRODUCTION

Recent advancements in wireless communication standards
and embedded computing are fostering the creation of novel
smart computing systems, which are rapidly getting real in
heterogeneous contexts, from personal to industrial. A crucial
enabling technology will be the Internet of Things (IoT),
which refers to the multitude of heterogeneous smart objects
seamlessly integrated into computing platforms. These IoT
devices represent the bridge between the physical and the
cyber worlds and allow us to enable novel functionalities, such
as remote monitoring and big data collection for intelligent
control and optimization.

The majority of IoT devices are constrained, i.e., charac-
terized by scarce capabilities and features. IoT devices are
typically implemented through low-cost embedded systems
that have reduced computing and storage capabilities and are
often battery powered. The scarcity of resources on those
devices is currently driving the definition of specific network
protocols that can accommodate the reduced features offered
by such devices. An example is the Constrained Application

Protocol (CoAP) [1], which is an application protocol tailored
to allow applications to communicate with constrained devices.

In order to compensate the limited capabilities of IoT
devices, more complex architectures are usually put in place
to allow the implementation of complex services on top of
the functionalities offered by them. IoT systems are usually
implemented as a multi-layered system in which IoT devices
are integrated into cloud-computing platforms. Intermediate
devices such as gateways or brokers are usually installed in
order to implement functionalities like protocol translation,
data dispatching or to support the execution of simple ap-
plications that require proximity with the IoT devices due to
time constraints.

In this complex architecture, data generated by IoT devices
can be processed by multiple heterogeneous entities, which
can be either different applications interested in analyzing
the data or intermediate entities that implement functionalities
like protocol translation, e.g. a gateway, or data dispatching,
a broker. In this context, novel encryption mechanisms are
required to enforce security and guarantee a fine-grained ac-
cess control over data. The latter, in particular, is an important
requirement to tune the amount of information that can be
accessed by each entity handling the data. For instance, while
applications should have complete access to the data generated
by IoT devices, an intermediate entity, like a broker, should
have access only to the minimum set of information required
to implement their functionalities [2].

Attribute-Based Encryption (ABE) is a new type of public-
key encryption that enforces a fine-grained access control on
encrypted data based on flexible access policies. With ABE
the source can encrypt data by using a set of attributes, which
regulate the level of access to each single information.

In this paper we assess the feasibility of adopting ABE
schemes in constrained IoT devices. Although, the feasibility
of adopting ABE schemes in different contexts, such as fully-
fledged embedded IoT systems [3] or smartphones [4] has
been already assessed, at the best of authors knowledge, this
is the first work analyzing the feasibility of implementing
ABE in devices with limited capabilities in terms of memory
and computational capabilities. Specifically, we implemented
three ABE schemes for ESP32, a popular IoT rapid proto-
typing platform, and we evaluated the costs, in terms of time
and energy consumption, of data encryption/decryption. Our
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Fig. 1: Example of policy tree

performance evaluation shows that ABE can be adopted in
constrained devices to ensure a fine-grained control on data
access with a cost that increases with the number of attributes.
Our analysis, in particular, highlights how ABE can have a
significant impact on the lifetime of battery-powered devices,
which can be reduced significantly when a number of attributes
above 10 is employed.

The rest of the paper is organized as follows. Section II
presents some background on ABE, Section III overviews
related work, Section IV introduces a set of reference use
cases and our threat model, Section V introduces our ABE
implementations for the ESP32 platform and the results of the
performance evaluation, while Section VI concludes the paper.

II. ATTRIBUTE-BASED ENCRYPTION

Attribute-Based Encryption (ABE) [5]–[8] is an emergent
cryptography paradigm which allows to encrypt a message in
such a way that only a set of authorized parties can decrypt
it afterwards. Such an authorization is expressed through
an access policy, which is a Boolean function evaluated on
some attributes. ABE can be viewed as a self-enforcing fine-
grained access control mechanism based on cryptography.
Moreover, it is a public-key cryptography technique, in the
sense that the key used for encrypting (encryption key) can be
public, thus allowing everyone to encrypt. The keys used for
decrypting (decryption keys) are instead private and unique for
each decrypting party. An access policy is usually expressed
by means of a tree (policy tree), in which leaves represent
attributes, which are Boolean arguments, and internal nodes
represent “AND” and “OR” Boolean operators. The “NOT”
operator is not permitted in the majority of the ABE schemes,
which thus allow only for monotonic access policies (see [9]
for an exception). At decryption time, the access policy is
evaluated with an attribute set as argument. The attribute set
includes all the “true” attributes. An attribute not included
in the attribute set is implicitly considered “false”. If the
access policy evaluates to true, then data will be decryptable,
otherwise data will not be decryptable. Fig. 1 shows an
example of policy tree which authorizes decryption only if
the attributes A and B are true (i.e., they are included in the
attribute set), or if the attributes C and D and E are true.

Two main ABE paradigms have emerged in the literature:
Key-Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-
ABE). In the KP-ABE paradigm [6], the access policy is
associated to the decryption key, and the attribute set is
associated to the ciphertext. Thus, the attributes semantically
describe data. KP-ABE paradigm can be viewed as a system
that “tags” data with a set of attributes, and then it gives users

a “ticket” that tells which data he can decrypt and which not.
All the KP-ABE schemes implement at least the following
four algorithms.

• (MK,EK) = Setup(). This algorithm initializes the
scheme and randomly creates and returns a pair of keys:
a master key MK and an encryption key EK. The master
key is kept secret by the authority in charge of generating
decryption keys (key authority). The encryption key is
made public and it is used to encrypt data.

• (C) = Encrypt(M,γ,EK). This algorithm encrypts a
message M (plaintext) described by the attribute set γ, by
means of the encryption key EK. It returns the encrypted
message C (ciphertext), which embeds the attribute set.

• (DK) = KeyGen(T ,MK). This algorithm creates a
new decryption key associated to the access policy T , by
means of the master key MK. It returns the decryption
key DK, which embeds the given access policy.

• (M or ⊥) = Decrypt(C,DK). This algorithm de-
crypts a ciphertext M with the decryption key DK. It
returns the original message M only if the access policy
evaluates to true, otherwise it returns a null message ⊥.

The number of operations performed by the Encrypt algo-
rithm grows linearly with the size of the attribute set. The
efficiency of the Decrypt algorithm is more complex to
analyze, and it depends on the particular access policy and
attribute set. In particular, the algorithm “visits” the policy tree
in a bottom-up fashion, starting from a set of leaves associated
to true attributes, and passing only by true internal nodes, up to
the root. The algorithm does not have to visit all the nodes of
the tree, but only a subset of them necessary to reach the root.
If more than one subset of nodes permits the algorithm to reach
the root, it chooses the minimal one. For example, supposing a
decryption key with the policy tree of Fig. 1, and a ciphertext
with an attribute set γ = {A,B,C,D,E}, the Decrypt
algorithm can visit only the A and B leaf nodes, the AND
node on the right, and the OR node at the root. The number
of operations performed by the Decrypt algorithm grows
linearly with the number of visited leaves and the number of
visited internal nodes including the root.

In the Ciphertext-Policy ABE (CP-ABE) paradigm [7],
the access policy is associated to the ciphertext, and the
attribute set is associated to the decryption key. Thus, the
attributes semantically describe a decrypting party. CP-ABE
paradigm can be viewed as a system that tags each user with
a set of attributes, and then associates an access policy to
each data. CP-ABE schemes are generally considered more
usable than KP-ABE ones [7]. This is because they realize
a more intuitive access control approach, the same used for
example by operating systems, where the policies on which
user can access which resource are associated to the resources
themselves. All the CP-ABE schemes implement at least the
following four algorithms.

• (MK,EK) = Setup(). This algorithm acts similarly to
the one in the KP-ABE schemes.

• (C) = Encrypt(M, T , EK). This algorithm encrypts
a message M associated with the access policy T , by



means of the encryption key EK. It returns the encrypted
message C, which embeds the given access policy.

• (DK) = KeyGen(γ,MK). This algorithm creates a
new decryption key associated with the attribute set γ, by
means of the master key MK. It returns the decryption
key DK, which embeds the given attribute set.

• (M or ⊥) = Decrypt(C,DK). This algorithm acts
similarly to the one in the KP-ABE schemes.

The number of operations performed by the Encrypt algo-
rithm grows linearly with the total number of leaves and the
total number of internal nodes (including the root) in the policy
tree. Similarly to KP-ABE schemes, the number of operations
performed by the Decrypt algorithm grows linearly with the
number of visited leaves and the number of visited internal
nodes including the root.

III. RELATED WORK

The application of ABE schemes to implement fine-grained
access control and confidentiality has been already proposed
in many different works, [10] [11] [12]. The feasibility of
adopting different ABE schemes in practice, however, has been
evaluated only in a few works.

In [4], the authors evaluated the feasibility of adopting ABE
on smartphone devices. Specifically, an ABE library for the
Android operating system is developed, then its performance
is evaluated by means of real experiments. The results from
the evaluation confirmed the possibility of using ABE on
smartphone devices, showing that such devices have an ac-
ceptable amount of resources to implement ABE schemes and
the resulting energy cost is acceptable.

In [3], instead, the authors assess the feasibility of using
ABE in IoT devices. Conversely to ours, their work does
not focus on constrained IoT devices but on more powerful
platforms that have resources comparable with smartphone
devices. Specifically the authors consider platforms like Rasp-
berry Pi or Intel Edison Boards, which have enough resources
to run a fully-fledged operating system. Experimental results
demonstrate that exploiting ABE in such systems is feasible,
although they also highlight that future works should focus on
improve its efficiency.

In [13], the authors carried out a comprehensive analysis
of different ABE schemes, with respect to their application
for decentralized secure data sharing. In particular, they per-
formed a realistic estimation of the resource consumption and
workload exploiting real-world system traces. Their evalua-
tion considered heterogeneous devices, namely a laptop and
a smartphone. Their analysis highlighted how the resulting
computation time can be acceptable in many use cases.

Compared with other works, at the best of authors’ knowl-
edge, this is the first one that evaluates the feasibility of
exploiting various ABE schemes on very constrained devices.
In particular, it is the first work considering low-cost embedded
devices with less than 1 MB of RAM and a microcontroller.

IV. USE CASE AND THREAT MODEL

The application of ABE schemes to implement fine-grained
access control and confidentiality has been already considered
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Fig. 2: Publish/subscribe architecture and mechanism

in literature in different and heterogeneous application sce-
narios, e.g. e-health [10], financial industry [11] and online
social networks [12]. In all those systems, a fine-grained
access control, like the one provided by ABE, is mandatory
in order to differentiate access to information in a distributed
manner. A popular application scenario for ABE that largely
involves constrained devices is the medical field. Future med-
ical systems will largely adopt Wireless Body Area Networks
(WBANs) [10] to collect data: patients that require continuous
monitoring, for instance, will be equipped with wearable
and/or implantable sensors, which collect biometric parameters
for real-time monitoring, e.g. to ensure a rapid response in
case of an emergency or automate the administration of treat-
ments. These WBANs produce highly-sensible data, which is
consumed by other constrained devices, e.g. an insulin pump
that analyzes data from other biomedical sensors to select the
proper dose, or by humans, e.g. a doctor that remotely checks
the status of a patient. In this context, data must be protected
from unauthorized accesses by means of encryption. However,
since multiple recipients are involved, a fine-grained access
control is mandatory to regulate which information can be
accessed by the users or devices of the system. For instance,
the glucose sensor can be programmed to encrypt its data
in order to allow only the insulin pump and the patient’s
physician to access the data.

In such systems, the information is often shared using
a publish/subscribe system. Publish/subscribe is a common
information-flow pattern adopted by different IoT application
protocols, such as the Message Queue Telemetry Transport
(MQTT) protocol [14] and the Constrained Application Pro-
tocol (CoAP) [15], to decouple the producer of information to
the consumer. The overall architecture of a publish/subscribe
system is depicted in Fig. 2(a). On one side, we have a set of
constrained IoT devices, e.g. sensors or actuators, and users
that behave as publish/subscribe clients and produce/consume
messages, e.g. periodic updates on a physical measurement.
On the other side, we have a broker, which is a powerful
device that is responsible for receiving, storing and dispatching
messages. An IoT device or a user that is interested in receiv-
ing messages on a given topic contacts the broker to issue a
subscription to that topic (Fig. 2(b)). Every time an IoT device



generates new data for a given topic, it sends a message to the
broker. The broker is responsible for dispatching messages
to all the subscribers (Fig. 2(c)). This approach allows us to
overcome the main limitations that characterize constrained
IoT devices. First, their limited capabilities in terms of mem-
ory and computational power allow them to interact only with
one application at a time. The adoption of a broker, instead,
allows such devices to be exploited by multiple applications
at the same time, thanks to the dispatching capabilities of the
broker. Secondly, the publish/subscribe architecture facilitates
the communication with battery-powered IoT devices. In order
to minimize the energy consumption, such devices should
often operate in power-saving mode in which they turn off
their radio. In a publish/subscribe architecture, the broker can
store the generated messages, thus allowing the IoT devices to
be sleeping, without compromising information availability.

In such architecture, ABE can ensure a fine-grained access
control, thus allowing to manage multiple recipients. In addi-
tion to this, ABE can help in securing the system further. The
core of the architecture is the broker, which is responsible for
handling and dispatching the messages, such device, however,
could be managed by untrusted third parties. The adoption of
ABE could help to ensure that the broker has access only to
metadata, e.g. the type of data or the topic, and not to the data
itself, thus allowing the use of an untrusted broker.

A. Threat Model

We consider three types of adversary: (i) a simple eaves-
dropper; (ii) an adversary able to compromise the broker; (iii)
an adversary able to compromise one or more IoT devices.

A simple eavesdropper cannot of course access data, since
messages travel in an encrypted fashion and he does not
own any decryption key. Notably, an adversary capable of
compromising the broker cannot do any better, since the broker
dispatches messages in an encrypted fashion, and it is not able
of decrypting them. This is in contrast to “classic” security
systems based on symmetric key encryption, in which the
broker shares a key with each publisher and subscriber. In
such systems, the broker is a single point of trust. If an ad-
versary compromises it, the confidentiality of all the messages
produced by the IoT devices is jeopardized. Conversely, ABE
allows IoT devices to communicate in an end-to-end encrypted
fashion, and at the same time it allows them to enforce access
control policies over messages. Of course, a compromised
broker can mount other attacks, for example it can simply
drop some or all messages, thus causing a partial or complete
denial of service. This type of attack may be counteracted by
IoT intrusion-detection techniques (see for example [16]), and
it falls outside the scope of the present paper.

An adversary capable of compromising one or more IoT
devices can obtain different effects, depending on the type
of compromised devices. If these devices only produce and
encrypt messages, as it happens for example with sensors,
their compromise does not endanger the confidentiality of any
message. This is because such devices are unlikely to own a
decryption key. This adversary can of course impersonate the

sensor, and produce malicious encrypted messages. Again, this
type of attack may be counteracted by IoT intrusion-detection
approaches, and they fall outside the scope of the present
paper. On the other hand, if the compromised devices also
decrypt messages, as it happens for example with actuators,
they must own a decryption key. Their compromise leads to the
compromise of their decryption key, and this in turn endangers
the confidentiality of some messages. Notably, the adversary
can access only those messages that the compromised devices
could access, since ABE enforces access control over data. In
order to recover from a decryption key compromise, the pub-
lish/subscribe system must employ some rekeying mechanism,
many of which exist in the literature [17]–[21].

V. PERFORMANCE EVALUATION

In this section we present the results of our experiments.
Our goal is to assess the feasibility of adopting ABE schemes
in constrained IoT devices, i.e. to analyze if ABE schemes
can be implemented in devices characterized by scarcity of
resources. In the followings, we first introduce our reference
ABE schemes, our experimental settings, and then we analyze
our obtained results.

A. Reference ABE Schemes

In this paper we focus on three notable ABE schemes:
1) the Goyal-Pandey-Sahai-Waters’s scheme [6] (we will

call it “GPSW scheme”), which has been the first
proposed KP-ABE scheme in the literature;

2) the Bethencourt-Sahai-Waters scheme [7] (“BSW
scheme”), which has been the first proposed CP-ABE
scheme in the literature; and

3) the Yao-Chen-Tian scheme [8] (“YCT scheme”), which
is a recent KP-ABE scheme for IoT devices focused on
encryption and decryption efficiency.

In all the three considered schemes, the most expensive
operation performed by the Encrypt algorithm is the point-
scalar multiplication, which is an elliptic-cure cryptography
operation (see [22] for details). In particular, the GPSW and
the YCT schemes perform one point-scalar multiplication for
each attribute in the attribute set, whereas the BSW scheme
performs two point-scalar multiplications for each leaf in the
policy tree. For each internal node of the policy tree, the BSW
also creates a random polynomial of zero degree if the node
is an OR operator, or degree equal to the number of children
minus one if the node is an AND operator. In both GPSW
and BSW schemes, the most expensive operation performed
by the Decrypt algorithm is the bilinear pairing, which is a
quite expensive cryptographic operation (see [22] for details).
Remind that the Decrypt algorithm does not have to visit
all the nodes of the tree, but only a subset of them necessary
to reach the root. The GPSW scheme performs one bilinear
pairing for each visited leaf in the policy tree, whereas BSW
performs two bilinear pairings for each visited leaf in the
policy tree. On the other hand, the YCT scheme does not
use bilinear pairing, so it is more efficient. The YCT scheme



performs one point-scalar multiplication for each visited leaf
in the policy tree.

B. Experimental Settings

As an example of constrained IoT devices, in our exper-
iments we exploited the ESP32 boards. ESP321 is an IoT
platform produced by Espressif Systems that is growing in
popularity due to its low cost, high availability and rich set
of features. At the core of the system we have a dual-core
Xtensa LX6 microprocessor at 240 MHz designed to have
ultra low-power consumption. The board is equipped with
520 KB of SRAM and 448 KB of programmable ROM.
The board includes both WiFi and Bluetooth connectivity
to accommodate a wide range of IoT use cases. The chip
includes cryptographic hardware acceleration support, namely
AES, SHA2, RSA, elliptic curve cryptography (ECC), random
number generator (RNG).

The board is natively supported by the FreeRTOS operating
system (OS)2. FreeRTOS is a popular OS for embedded
devices which supports a wide range of microcontrollers. It
is written in the C language and it provides support for
multi-threaded programming. Compared with fully-fledged
OSs, FreeRTOS lacks support for many advanced features
and includes only a basic support for memory management
and networking operations. A basic support for cryptographic
operations is included, such as the popular wolfSSL library3.

To carry out our performance evaluation, three existing
libraries for Linux OS implementing the three reference ABE
schemes have been ported to FreeRTOS: the libcelia library4

which implements the GPSW scheme; the libbswabe library5

which implements the BSW scheme; and the kpabe-yct14
library6 which implements the YCT scheme. All the three
libraries use elliptic curves with effective security strength of
80 bits, which is equivalent to a 1024-bit RSA encryption.
The libraries have been modified in order to suit the features
offered by FreeRTOS. Specifically, the major modifications
consisted into: (i) removing any usage of GLib, which is
unavailable in FreeRTOS, and (ii) adapting the code to use
the wolfSSL library instead of the more popular openSSL one,
which is not supported by FreeRTOS. Our FreeRTOS porting
of these three libraries is publicly available7.

In order to assess the performance of the three ABE
schemes on the ESP32, three simple main programs, one for
each library, have been developed to perform a sequence of
operations. After the initial Setup algorithm which generates
a master key and an encryption key, the program generates a
decryption key with the KeyGen algorithm. Then, it creates
a random 4-byte string which emulates the message to be
transmitted. After that, the program encrypts the message and
subsequentially decrypts it. For each operation the program

1https://www.espressif.com/en/products/hardware/esp32/overview
2https://www.freertos.org/
3https://www.wolfssl.com/
4https://github.com/gustybear/libcelia
5http://hms.isi.jhu.edu/acsc/cpabe/
6https://github.com/ikalchev/kpabe-yct14-cpp
7https://github.com/wellsaid
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Fig. 3: Example of flat policy

prints a message over the serial connection, thus the time
required to perform every operation can be measured. In order
to measure the energy consumption, a high precision USB
power meter is adopted. Specifically, we adopted the AVHzY
USB Power Meter Tester8, which supports automatic data
collection from an attached PC. The comparison between the
log from the ESP32 board and the power meter allowed us to
measure the energy consumed for each specific operation.

The following metrics have been considered.
• Encrypton/decryption time (s), which measures the time

required to execute an Encrypt/Decrypt algorithm.
• Encrypton/decryption energy consumption (mWh), which

measures the overall energy consumed by the board to to
execute an Encrypt/Decrypt algorithm.

An increasing number of attributes, from 5 to 50, has been
considered for encryption. Such a number represents the size
of the attribute set for the KP-ABE schemes (GPSW and
YCT), or the number of leaves in the access policy for the CP-
ABE scheme (BSW). Strictly speaking, these two quantities
have not the same meaning, but they are usually compared in
ABE performance evaluation papers [3], [4], [23] since they
both give a measure of the complexity of the access policies
involved in an application. For each experimental scenario, 5
independent replicas of the experiment have been executed.
Our results report the average value of the measurements.
The 95%-confidence intervals were also evaluated, however,
they showed a negligible level of variability, therefore they
are omitted in the results presented in this section.

As said in Section II, the number of operations performed
by the Decrypt algorithm grows linearly with the num-
bexxxxxxxxxxxxr of visited leaves and the number of visited
internal nodes including the root. This means that policies with
the same number of leaves but a different “shape” can perform
differently. We shaped the access policies as flat policies, with
a single internal node (the root) which is an AND operator
and many child nodes, one for each attribute. Fig. 3 shows
an example of flat policy. With a flat policy, the Decrypt
algorithm is always forced to visit all the leaves of the policy
tree.

C. Results

Figs. 4 and 5 show the encryption time and the encryption
energy consumption of the three schemes with respect to the
number of involved attributes. Unfortunately, an internal bug
of the kpabe-yct14 library prevented us to test the Encrypt
algorithm of the YCT scheme with more than 10 attributes.
Despite this, we believe the experimental results for 5 and 10

8Power Meter Tester product page: https://goo.gl/vQDyac
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Fig. 5: Encryption energy consumption

attributes are interesting enough to be included in the paper,
especially for the good decryption performances (see after).

As expected, the GPSW and the YCT schemes show sim-
ilar performances, since they both perform one point-scalar
multiplication for each attribute in the attribute set. On the
other hand, the BSW scheme is the most expensive one in
encryption, in terms of both time and energy consumption.
This is because it performs two point-scalar multiplications
for each leaf in the policy tree, and it generates a random
polynomial for each internal node. This suggests us that KP-
ABE schemes are in general more efficient than CP-ABE
ones. However, CP-ABE schemes are generally considered
more usable than KP-ABE ones [7], because they associate
the access policy to data, instead of keys. This corresponds
to a more intuitive access control approach. This advantage in
terms of usability is paid in terms of efficiency.

Despite many papers on ABE performance evaluation [3],
[4], [23] report an encryption time linear on the number
of leaves for the BSW scheme, we actually experienced an
over-linear time. This is mainly ascribable to the random
polynomial generation that the BSW scheme performs for each
internal node of the policy tree. The complexity of generating
such random polynomial grows in an over-linear fashion with
respect to the number of children of the internal node. To
confirm this, we re-shaped the flat policy into an equivalent
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Fig. 6: Example of 3-level policy
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Fig. 7: Decryption time with flat policies

3-level policy, in which each internal node has fewer children.
In a 3-level policy, there is an additional intermediate level
between the leaves and the root. The nodes in this intermediate
level are AND operators, and they have no more than two
leaves as children. Hence, the root has only dn/2e child nodes,
where n is the number of leaves, opposed to n child nodes
of the flat policy. Fig. 6 shows an example of 3-layer policy,
which is equivalent to the flat policy of Fig. 3. As it can be
seen in Figs. 4 and 5, the encryption time and the encryption
energy consumption of the BSW scheme with a 3-level policy
decreases sensibly with respect to the flat policy. This confirms
that the over-linear cost of BSW encryption is due to the
random polynomial generations, which grow in an over-linear
fashion with respect to the number of children of each single
internal node. This also suggest us that shaping the policies in
many levels is a good practice to improve the performances of
the BSW encryption, and in general of the CP-ABE schemes.

Regarding decryption, Figs. 7 and 8 show the decryption
time and the decryption energy consumption of the three
schemes with respect to the number of involved attributes,
with flat policies. As expected, the BSW is again the most
expensive scheme also for decryption, because it performs
two bilinear pairings for each visited leaf in the policy
tree. No over-linear trend has been observed in decryption.
Interestingly, the YCT scheme is sensibly more efficient than
the GPSW scheme in decryption. This is mainly because it
is not based on bilinear pairings, but rather on point-scalar
multiplications, which are less expensive. This suggests us
that the GPSW and the YCT schemes are equivalent in those
applications in which IoT devices only produce and encrypt
data, for example in wireless sensor networks. Conversely,
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Fig. 8: Decryption energy consumption with flat policies
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Fig. 9: Decryption time with 3-level policies

where also actuators are involved, and thus IoT devices are
required to both encrypt and decrypt data, the YCT scheme is
sensibly more convenient.

Finally, Figs. 9 and 10 show the decryption time and the
decryption energy consumption of the three schemes with
respect to the number of involved attributes, with 3-level
policies. In all the three schemes, decryption efficiency seems
independent from the shape of the policy tree. This confirms
us that shaping the policies in many levels is a good practice
in CP-ABE schemes because it improves the performance of
encryption, without decreasing the performance in decryption.
On the other hand, it seems not to influence the performances
for KP-ABE schemes. Indeed, for both the GPSW and the
YCT schemes, the efficiency is independent from the shape
of the policy trees, both in encryption and decryption.

D. Battery Lifetime Analysis

In order to better analyze the consumed energy and to
obtain a key performance indicator that directly evaluates
the feasibility of adopting ABE in a real IoT scenario, we
also estimated the lifetime of a battery-powered sensor node,
i.e. the time of operation for the sensor node to exhaust its
battery. The evaluation is performed analytically by exploiting
both the measurements from real experiments and the energy
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Fig. 10: Decryption energy consumption with 3-level policies
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Fig. 11: Battery lifetime

consumption data from the datasheet of the ESP32 9. A
scenario in which a battery-powered sensor collects samples
of a physical measurement with a given period, encrypts the
measurement using ABE, and then transmits the encrypted
message over a WiFi connection is considered. For the sake
of brevity, we only consider the scenario in which the device
only produces and encrypts data, i.e., it is a sensor.

In our analysis, the sensor is assumed to be powered by
two AA 1.5V batteries, which can provide 2.85 Ah each. The
overall evaluation of the energy consumption of the sensor
included: (i) the overall energy consumed by the sensor for
data encryption; (ii) the energy consumed for the transmission
of the encrypted message over WiFi; (iii) the energy consumed
in between two subsequent encryption/transmission in which
the sensor remains idle. For the first component we used the
measurements obtained from the real experiments, while for
the latter two we exploited the power consumption values
from the datasheet. To this aim, we assumed that the radio
transceiver transmits data at 1 Mbps using DSSS as mod-
ulation, which results in a power consumption of 792 mW.
Moreover, we assumed that the board, when idle, enters into
light-sleep mode, which results in a power consumption of
2.64 mW. Finally, a value of 60 seconds is considered for the

9https://goo.gl/BHv51B



measurement period.
In Fig. 11 the resulting battery duration is reported in days

for every combination of attributes, ABE schemes and number
of attributes. The horizontal red line in correspondence to 134
days represents the battery lifetime of a sensor sending data in
clear, i.e. without the cost of any encryption. In the scenario
with the lowest number of attributes, i.e. 5 attributes, a battery
lifetime up to 90 days (32% decrease with respect to no-
encryption scenario) can be obtained with the schemes GPSW
and YCT, the ones resulting in the lowest energy consumption.
With the BSW scheme, instead, a lower lifetime is obtained,
approximately around 50 days. As expected, as the number of
attributes increases the battery duration reduces proportionally
to the energy consumption of each ABE scheme. As the
number of attributes increases up to 50 the resulting battery
lifetime goes below the month. Specifically, it results in 25
days with GPSW, while it drops significantly to some days
with BSW.

Although the adoption of ABE encryption has a noticeable
cost in terms of energy consumption, the lifetime reduction can
still be considered acceptable when a low number of attributes
and an energy-efficient scheme are adopted, i.e. 5/10 attributes
and the GPSW scheme. When, instead a higher number of
attributes is adopted, the resulting battery lifetime is shorten
significantly down to a value that could be unacceptable
in scenarios in which a frequent battery replacement is not
feasible or desirable.

VI. CONCLUSIONS

In this paper, the feasibility of adopting ABE schemes
in constrained IoT devices was analyzed by means of real
experiments. Existing ABE implementations were ported to
the ESP32 IoT platform and the performance of each scheme
was analyzed to assess the feasibility of its adoption in a real
implementation. The results of our experiments highlighted
how ABE encryption/decryption operations have a significant
execution time and energy cost on constrained IoT devices
characterized by limited memory and processing. Such costs,
however, are still bearable when a limited number of attributes
is adopted. An analytical analysis of the battery lifetime was
also carried out to offer an estimate of the impact of ABE op-
erations on battery powered devices. The analysis highlighted
that ABE operations result in a noticeable reduction of the
battery lifetime, which, however, can be considered acceptable
when the number of attributes is low. As future work, we plan
to assess the performance of ABE also in other IoT platforms,
considering boards that are equipped with hardware support
for the execution of some of the cryptographic operations
required by ABE schemes.
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